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The fate of oceanic carbon and nutrients depends on interactions between viruses, prokaryotes, and unicellular eukaryotes

(protists) in a highly interconnected planktonic food web. To date, few controlled mechanistic studies of these interactions exist,
and where they do, they are largely pairwise, focusing either on viral infection (i.e., virocells) or protist predation. Here we studied
population-level responses of Synechococcus cyanobacterial virocells (i.e., cyanovirocells) to the protist Oxyrrhis marina using
transcriptomics, endo- and exo-metabolomics, photosynthetic efficiency measurements, and microscopy. Protist presence had no
measurable impact on Synechococcus transcripts or endometabolites. The cyanovirocells alone had a smaller intracellular
transcriptional and metabolic response than cyanovirocells co-cultured with protists, displaying known patterns of virus-mediated
metabolic reprogramming while releasing diverse exometabolites during infection. When protists were added, several
exometabolites disappeared, suggesting microbial consumption. In addition, the intracellular cyanovirocell impact was largest, with
4.5- and 10-fold more host transcripts and endometabolites, respectively, responding to protists, especially those involved in
resource and energy production. Physiologically, photosynthetic efficiency also increased, and together with the transcriptomics
and metabolomics findings suggest that cyanovirocell metabolic demand is highest when protists are present. These data illustrate

cyanovirocell responses to protist presence that are not yet considered when linking microbial physiology to global-scale

biogeochemical processes.
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INTRODUCTION
Microbes drive planetary nutrient and energy cycles, but they do
so under bottom-up (resources) and top-down (predation and
infection) constraints within intricate food webs. In the oceans,
resource availability was historically thought to affect microbial
biomass and composition more strongly than predation [1].
However, recent global ocean species interaction networks
suggest that biotic factors are stronger predictors of microbial
community structure than abiotic factors [2]. Predation rates are
commonly on par with microbial growth in low-nutrient surface
ocean waters. However, the fate of nutrients differs by predator
[3-6], with the paradigm being that viruses “shunt” carbon (C) and
nutrients toward the dissolved phase [7-10] or “pump” C to the
deep ocean [11], and heterotrophic protists serve as a critical link
between lower and higher trophic levels [12-14]. Yet, viral and
protistan interplay in controlling prokaryote populations and
nutrient cycling [15-17] remains poorly characterized, despite
indications of potential synergism of viral and protist impacts on
prey populations [16, 18-20] and viral influence on protist
predation and growth [21, 22].

In nature, Synechococcus, which together with Prochlorococcus
contributes about one-quarter of total global oceanic primary

productivity and is predicted to become more abundant with
continued climate change [23], is both preyed upon by protists
and infected by viruses (phages). For protists, field data show
that they reduce Synechococcus abundances via direct ingestion
(grazing) [24], while laboratory experiments demonstrate that
protist predation alters freshwater Synechococcus cell morphol-
ogy [25-27] in ways that could impact photosynthesis or
nutrient cycling. For viruses, virus-infected cells (virocells) are
physiologically and metabolically distinct from uninfected cells
and display unique metabolite footprints that could impact the
surrounding ecosystem [28-33]. For cyanobacteria virocells
(cyanovirocells) specifically, while the physiological response of
Synechococcus to infection has been characterized via genome-
wide transcriptomics [34, 35] and photophysiology [36-38], the
broader cellular response (e.g., metabolomics) and how the
presence of a protist impacts cyanovirocell metabolic repro-
gramming and ecosystem footprints have not been studied.
Ecosystems are comprised of communities of simultaneously
interacting organisms, and yet phage-protist-cyanobacteria
interactions remain understudied.

Here we assess phage-protist-cyanobacteria interactions by
examining how population-level marine Synechococcus virocell
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physiology is impacted by the presence of a protist. We use a
systems biology approach including time-resolved genome-wide
transcriptomics, endo- and exo-metabolomics, photosynthetic
efficiency measurements, and microscopy in a culture-based
model system. Together these efforts provide mechanistic
grounding to interactions among T4-like phages, Synechococcus,
and dinoflagellates implicated in microbial interaction networks
that are highly predictive of global ocean carbon flux [39].

MATERIALS AND METHODS
Culture conditions
Using semi-batch culturing, axenic Synechococcus strain WH8102 was
grown in SN media prepared with sterile 0.1 pum-filtered, autoclaved
seawater obtained from Scripps Pier in January 2014. Cultures were
maintained at 20+ 1°C on a light: dark cycle of 14h:10h at 60 umol
photons m™2 s~ '. The protist Oxyrrhis marina (CCMP3375; NCMA), a
dinoflagellate of size 10-20 um, was grown in Scripps Pier (January 2014)
seawater with 1x 10° cells mL™’ Isochrysis galbana (CCMP1323; NCMA) as
prey. Prey levels were depleted just prior to the experiment (see below).
The T4-like Myophage S-SSM5 (dsDNA genome of 176.18 Kbp) was
propagated on axenic exponentially growing WH8102 within 14 days of
beginning the combined phage infection and protist co-culture experi-
ment, filtered through a 0.45-um Supor filter (Pall Corp, cat. no. PN4614)
and stored in the dark at 4 °C. Phage titer was determined by the most
probable number assay [40, 41] using three independent dilution series on
WH8102 grown in 96-well plates under the growth conditions described
above. Preliminary viral infection dynamics were assessed using exponen-
tially growing WH8102 at 60 umol photons m~2 s~ with a light: dark cycle
of 14h:10 h.

Sampling

Twenty liters of exponentially growing Synechococcus strain WH8102 were
aseptically pooled and split into four treatments: cyanobacteria only,
cyanobacteria with phage, cyanobacteria with protist, and cyanobacteria
with both phage and protist, with four biological replicates of each (each
1.2 L volume). Phage infection was initiated at the onset of the light cycle
in eight separate flasks, each with 3 x 107 pfu mL™! (phage) incubated with
2.8x% 107 host cells mL™" (+phage treatment average) and 2.9 x 107 host
cells mL™" (+phage and protist treatment average) for a multiplicity of
infection of 1.1. Encounter theory estimates based on the infectious phage
to host cell numbers present in the infection incubation predict that 67%
of WH8102 cells would be phage-infected. After 1 h, cells were centrifuged
and the supernatant containing free phages was removed, cells were
washed and resuspended in spent culture medium (same for the
cyanobacterium-only and cyanobacteria with protist treatments), and
these samples were counted via flow cytometry. Synechococcus sp. starting
concentrations were 1.9+03x 107, 1.7+0.1x 107, 2.2+0.1x10’, and
1.7+03x10” cells mL™" in the untreated control cyanobacteria only,
phage infection, protist co-culture, and combined phage and protist
treatments, respectively (Ave +SD). In addition, two 1.2L replicates of a
0.45-um-filtered medium served as a control for exometabolite analyses.

Protist Oxyrrhis marina (CCMP3375) cells were allowed to reduce
Isochrysis sp. CCMP1323 maintenance prey concentrations over 3 days.
CCMP3375 was concentrated 1 h prior to the experiment via gentle gravity
filtration over 10 um pore size polyethersulfone membrane filters (PES,
Sterlitech Corp. cat. no. PES 8025100), with continual flushing of sterile
(0.22-um-filtered and autoclaved) seawater. O. marina CCMP3375 was
added to both cyanobacteria and cyanobacteria with phage treatments at
a final concentration of 43 cells mL™~" and final protest: Synechococcus ratio
of 1:512,000 and 1:395,000, respectively, which marked the start of the
experiment. All treatments were maintained at 20+ 1°C under 60 pmol
photons m~2 57",

Samples (transcriptomics, metabolomics, flow cytometry, microscopy,
photosynthetic efficiency) were collected between 2 and 12 h every ~2 h
during the daylight portion of the light: dark cycle, by gently mixing and
pouring 100 mL into a sterile 250 mL polycarbonate flask. Cell and phage
abundance samples were preserved with a final concentration of 0.1% EM-
grade glutaraldehyde (Acros Organics, cat. no. 233280250), stored at 4 °C
for 15-30 min, then flash-frozen in liquid nitrogen and stored at —80 °C
until counted via flow cytometry (Synechococcus and phage) or
fluorescence microscopy (O. marina). Active fluorescence samples were
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stored in darkened tubes for 15 min at 20 °C, then immediately analyzed
(see below). For transcriptomics, ~2x10® Synechococcus cells were
centrifuged at 10,000g for 10 min, flash-frozen in liquid nitrogen, and
stored at —80°C until RNA extraction. For exo-metabolomics, ~2 x 108
Synechococcus cells were filtered onto 0.22-um pore size PES filters
(Sterlitech, cat. no PES0225100) and the filtrate was stored at —20 °C until
analysis. For endo-metabolomics, the ~2 x 108 Synechococcus cells retained
on 0.22-um pore size PES filters were washed twice with 5mL of sterile
phosphate-buffered saline, and filters were transferred to Eppendorf tubes,
flash-frozen in liquid nitrogen, and stored at —80°C until extraction. All
downstream analyses were performed with a minimum of three biological
replicates.

Photosynthetic measurements

From at least three biological replicates, the maximum photosynthetic
efficiency of photosystem Il (PSIl) expressed as F,/F,, was measured using
the FastAct Fast Repetition Rate fluorometer (FRRf; Chelsea Technologies
Group, Surrey, UK). The minimum (F,) and maximum (F,) fluoresence
yields, F,/F,, were calculated as ((F,,—F,)/Fn) using cells that were dark-
adapted at 20 °C for 15 min prior to analysis. Prior to experimental analyses,
optimum excitation parameters were determined experimentally using cell
cultures as recommended by the instrument manufacturer (Chelsea
Technologies Ltd. FastPro Manual, pp. 33). Based on these data, the
instrument was programmed to generate single turnover saturation using
100 excitation flashlets on a 2-ps pitch with a combination of excitation
wavelengths (450, 530, and 624 nm) and included a relaxation phase of 40
flashlets on a 50-ps pitch. Acquisition sequences were repeated five times
with 100-120 ms between sequences, as recommended. Cell-free controls
(0.2-um-filtered cultures; Pall Supor Acrodisk, Cat. No. 4612) were used to
determine blank values.

Statistics

Besides the method-specific statistics employed for transcriptomics and
metabolomics, which are explained in their respective sub-sections, all
instances where “significance” is mentioned in the results and discussion
section refer to a two-tailed t-test with a p value <0.05.

Transcriptomics

Transcriptomes were generated for six timepoints from each condition and
RNA was extracted from frozen pellets using Qiagen RNEasy Mini Kit, total
RNA was quantified and quality-assessed using the 2100 Expert Prokaryote
Total RNA Pico kit and Agilent Bioanalyzer, rRNA sequences were depleted
using an lllumina Ribo-Zero Plus rRNA Depletion Kit, libraries were created
using the lllumina TruSeq Stranded Total RNA Kit, and sequenced on a
HiSeq-2500 1 TB device, yielding paired-end 2 x 101 bp reads. Between 13
and 29 million reads were obtained per sample (median = 18.5 million
reads). BBtools v35.84 following JGI's default pipeline was used on raw
reads to remove those containing two or more “N” bases with an average
quality score across the read <10, with a length <51 bp, containing known
lllumina artifacts, or mapping to PhiX, human, cat, dog, and mouse
genomes with the identity of >=93%. BBtools v35.84 trimmed reads to
remove known Illumina artifacts in 5° and 3’ ends, or when with a base
quality score under 6 on 3'. Differential expression analyses were
conducted with a custom-made R script used in numerous prior phage-
host ‘omics studies [30, 42, 43]. Treatment samples were compared to their
corresponding untreated control at each time point (e.g., T2 cyanovirocells
versus T2 cyanobacteria only; T2 cyanovirocells with protist versus T2
cyanobacteria only).

Metabolomics

For differential analyses, peak height was log;o-transformed using a
custom R script and used as a proxy for metabolite abundance. Metabolites
detected (raw peak height >=10,000) in <2 biological replicates were
excluded. Differential abundance between cyanobacteria only (control)
and each infection and/or protist co-culture treatment was computed
using a fold change (FC) between log;o-transformed peak heights
(averaged across replicates). False discovery rate (FDR) was estimated
using a t-test with Benjamini-Hochberg-corrected p values. A metabolite
was considered significantly different between control and treatment if
logoFC = 0.1 (an approximate change of 25% between treatment and
control) and FDR < 0.05 (5% false positives).
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RESULTS AND DISCUSSION

Experimental design and infection dynamics

We sought to understand the effect that the presence of a protist,
regardless of significant predation, would have on a population of
phage-infected marine Synechococcus (i.e., virocells), through a
time-resolved systems biology approach. To this end, we
generated Synechococcus virocells (i.e., cyanovirocells) by adding
the T4-like Myovirus S-SSM5, and we compared these cyanovir-
ocells to cyanovirocells co-cultured with the protist O. marina.
These cyanovirocells were compared to uninfected Synechococcus
co-cultured with the protist, and the baseline for all treatments
was a Synechococcus control lacking both phage and protist
(Fig. TA). Microscopy measurements confirmed that approxi-
mately half the protist population were actively feeding upon
Synechococcus (Fig. 1B), even though they did not significantly
alter their overall abundance due to the low protist: prey ratio.
Furthermore, we calculated an encounter rate of 444 prey cells
mL™" s7' following conservative approaches [44, 45], which
represents 8-97% of the total prey population directly encoun-
tered by the protist by 2 and 10h, respectively. O. marina
contacting prey would presumably induce prey stress signals, as
previously found [46, 47], but neither direct prey ingestion nor
prey contact is necessary for the protist to elicit prey responses
[48-52]. Here we investigate Synechococcus virocell physiological
responses to the presence of the protist, rather than responses to
predation.

As for the phage, we examined infection dynamics over the
course of multiple infection cycles, expecting the first infection
cycle to be similar to that of the closely related T4-like phage Syn9
(77% average nucleotide identity; Supplementary Fig. S1) infecting
our same host [34, 53]. Results indicated that, indeed, the phage
had a ~6-8-h latent period and significantly reduced Synechococcus
population abundances (Fig. 1C). These dynamics were maintained
when the protist was added (Fig. 1C), confirming that protist
addition did not catastrophically interfere with phage infection.
Similarly, phage infection did not alter protist feeding upon
Synechococcus (Supplementary text). Finally, phage transcription
was also mostly unaltered when the protist was added (Fig. 2), as
the phage maintained the temporal transcriptional dynamics
expected for T4-like myoviruses [34, 54] with or without protist,
and only five phage genes significantly changed expression with
the protist (Supplementary Figs. S2 and S3 and Supplementary
text). Overall, protists were unaffected by phages and phage
infection was unaffected by protists. The experimental design thus
enables us to examine the ways in which cyanovirocells respond to
external protist presence, not necessarily predation, from a
transcriptional, metabolic, and ecological perspective.

Protist impact on cyanovirocell endometabolites

To date, virocell studies have demonstrated that while phage
transcription may largely be invariant, the host has a unique
transcriptional response depending on the phage and the
environment [34, 42, 43, 55, 56]. However, the transcriptional
and metabolic responses of virocells during co-culture with
protists are unknown.

We investigated whether the presence of a protist would alter
cyanovirocell transcriptional and metabolic profiles given the
stress of protist-prey contact, handling, and ingestion/rejection
[46-52, 57, 58]. We first investigated population-level intracellular
metabolite profiles, which has not been explored previously. For
this, we compared each treatment (cyanobacteria with protist,
cyanovirocells without protist and cyanovirocells with protists) to
the control (cyanobacteria only) lacking both phages and protists.
We found that 0, 0, and 10 intracellular metabolites changed in
each of those treatments relative to the control, respectively
(Fig. 3A and Supplementary Table S1). The ten metabolites
significantly changing in the cyanovirocells with protists are fewer
than those reported in the three other prior temporally resolved
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virocell endometabolomic studies [59-61]. A detailed comparison
with those studies (Supplementary Table S2) revealed that we
used more stringent criteria for significance and that, had we used
the prior, more permissive analytical procedures, those would
have identified up to 17x more metabolites (Supplementary
Table S3 and Supplementary text). As marine endo- and exo-
metabolomics analyses are not yet standardized across the field,
we opted for a more conservative approach for our metabolomics
analyses.

Of the ten endometabolites significantly changing in the
cyanovirocells with protist, the majority (60%, n=6) changed in
the population undergoing the first infection cycle (ending at
6-8 h), whereas the rest changed at 12 h post phage addition; in
the population undergoing subsequent infections (Fig. 3A). Of the
six metabolites changing within the first infection cycle, five were
enriched (guanine, L-homoserine and three others with no
database hits, thus termed “unknown”) and one was depleted
(diethanolamine) in the protist-treated cyanovirocells relative to the
control lacking phages or protists, and all between 4 and 8h.
Metabolites could be enriched because cyanovirocells either
increase production intracellularly or incorporate them from the
environment. Both guanine (@ nucleotide) and L-homoserine (an
amino acid) are building blocks that could be resources for phage
reproduction, as it has previously been posited from transcriptome
[55, 60, 62-65] and metabolome [59-61] studies of other phage
infections. Especially in cyanobacteria, cyanophages are thought to
be highly proficient at deviating cellular resources toward phage
replication [31, 34, 66], which in this case would fuel the middle and
late stages of infection. Alternatively, homoserine is also known to
increase in cells responding to stress, likely as a consequence of
protein degradation [67]. Therefore, the enrichment of these
metabolites in the protist-treated cyanovirocells could reflect both
stress and a need for additional resources for phage replication that
are not as needed in the protist-free cyanovirocells.

Finally, the remaining four endometabolites that changed after
the first infection cycle included three enriched (the lipid myristic
acid and two more “unknown”) and one depleted (nicotinamide, a
vitamin B3 derivative) compound. Here the signal derives from an
asynchronous population composed of an uninfected minority, as
well as a majority of cells undergoing different stages of infection.
The lipid increase is consistent with viral infection [59, 68-70] and
cyanophage-mediated restructuring of cellular membranes [71], as
well as with microbial responses to protists (without phages) [72].
The decrease in intracellular nicotinamide may reflect cyanovir-
ocells utilizing it for survival, given its critical biological role in
myriad enzymatic reactions [73].

Protist impact on cyanovirocell transcription

Focusing next on gene expression, we again compared all
treatments (cyanobacteria with protist, cyanovirocells only, and
cyanovirocells with protist) to the untreated control. Each of those
had 0, 48, and 216 differentially expressed (DE) genes (Fig. 3B and
Supplementary Table S1). The 48 DE genes in the cyanovirocells
only treatment represent a smaller host response than that
reported for this same host during infection by myovirus Syn9 [34]
which we attribute to differences in both the phage used and the
experimental design as explained in the Supplementary text.
The lack of DE genes in the protist-only treatment suggests that
the transcriptional differences across the two cyanovirocell
treatments (the 216 vs 48 DE genes) were due to protist presence,
with a 4.5-fold increase in the number of host genes changing
expression in the cyanovirocells in response to the protist. Both
the direction (increased or decreased expression relative to the
control; here “over-expressed” and “under-expressed”, respec-
tively) and timing of cyanovirocell gene expression also varied
with and without protist, as follows. Host genes were mostly over-
expressed—65 and 89% in the absence and presence of the
protist, respectively (Supplementary Fig. S5A)—thus suggesting

SPRINGER NATURE
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Fig.1 Experimental design and impacts of a protist on cyanobacteria and cyanobacteria virocells (cyanovirocells). A Experimental design.
Synechococcus WH8102 cells were infected with the T4-like myophage S-SSM5 to generate cyanovirocells. Cyanovirocells were studied over
the course of infection either alone (“Cyanovirocells only” treatment) or in the presence of the protist Oxyrrhis marina (“Cyanovirocells with
protist”). Arrows denote the comparisons: all treatments are compared against the Control to detect significant changes to the transcripts,
metabolites, and photosynthetic efficiency. In addition, the focus of this study is the cyanovirocell responses to the presence of a protist,
which is the contrast between cyanovirocells only and cyanovirocells with protist. B Fluorescent microscopic image of O. marina with ingested
Synechococcus cells (protists were stained red with WGA - Alexa 488 and Synechococcus were detected with phycoerythrin pigment
autofluorescence). Image was acquired using Zeiss LSM 710 confocal microscope with a 63x (1.4 N.A.) objective. C General infection dynamics
of Synechococcus infected with S-SSM5, followed over 55 h post phage addition. This time course captures multiple cycles of infection. D Cell
and phage abundances over the course of this study. Samples for genome-wide transcriptomics, endo-metabolomics, exo-metabolomics, and
microscopy and photosynthetic efficiency measurements were taken every 2 h between 2 and 12 h post phage and/or protist addition. This
time course captures a population-level view of infection, whereby more than one infection cycle is taking place (shaded in gray): the phages
released from “infection cycle 1” infect new cells and undergo “infection cycle 2+” (i.e, two or more asynchronized infection cycles may be
happening at this time). Both the burst size (here depicted as 4 phages released per infected cell), and the number of infection cycles are
simplified. Cell abundance decreases significantly from start to end of ‘omics sampling during phage infection (t-test, p value <0.05), with or
without protist (indicated by an asterisk for each treatment), and it does not significantly change in the presence of the protist alone. All
experiments included a minimum of three biological replicates and the average with standard error is shown.

that a larger number of host genes enhanced their expression in
the cyanovirocells co-cultured with the protist than without it. In
addition, when protist was added, the cellular transcriptional
response was greater toward the end of the infection cycle, as the
majority (52%, n = 153) of the genes were DE at 6 h post phage
addition, compared with only 18% at that same time without the
protist (Supplementary Fig. S5B). Thus, when protist was added,
host transcriptional responses were greatest toward the end of
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the first infection cycle. Again, the majority (97%, n = 149) of those
153 genes were over-expressed.

We next examined the functions of these 153 host transcripts
that responded at 6h in the cyanovirocells with protists by
grouping them into functional categories. The category with the
most genes was the “unknown” (not functionally annotated,
n =74 genes) and its average fold change (aFC) of expression in
the cyanovirocells treated with the protist relative to the
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categories for this and generally the T4-like myophages (early, middle and late-expressed genes) are unaltered with protist for all except 5
genes (see Supplementary text). The time course for the infection captures more than one infection cycle: the first one with the phages added
at the start of the experiment (“inf. cycle 1”) and the ones that follow once the phages are released from “inf. cycle 1" and infect new cells (“inf.

cycle 2+4").

cyanobacteria only control was 3.7 (Supplementary Fig. S5C),
which highlights the need for further experimental work to
characterize unknown genes even in relatively well-studied
marine cyanobacteria.

The three most highly expressed categories with known
functions were “Phosphate Metabolism” (aFC = 5.8, n =3 genes),
“Central Carbon Metabolism” (aFC = 5.4, n =5 genes) and “Protein
Metabolism” (aFC=4.9, n =15 genes) (Supplementary Fig. S5C).
The “Phosphate Metabolism” category included the inorganic
phosphate (Pi) transporter pstS and the transcriptional regulator
phoB that respectively transport Pi into the cell and activate
downstream cellular metabolic pathways under P-limitation [74].
Expression of these genes suggests that the cyanovirocells were P-
limited, which is expected from cyanobacteria-cyanophage gene
expression studies lacking protists [34, 75-78]. As phoB was not
over-expressed without the protist, only pstS (Fig. 4A), assuming
the PhoB protein is also highly produced, these data suggest that
the presence of the protist induces a low-P-mediated cell-wide
metabolic change in the cyanovirocells.

Next, the “Central Carbon Metabolism” category included
genes involved in glycolysis, pentose phosphate pathway (PPP),
and the Calvin cycle. These genes have been found to be
expressed during cyanophage infection [34, 78, 79] and are
assumed to shift cellular energy production toward phage
replication. Given that they were only over-expressed in the
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protist-treated cyanovirocells, it suggests that protist presence
changes the energy needs of the cyanovirocells, especially
toward the end of infection (see below).

Finally, the “Protein Metabolism” category mainly included
genes for chaperones such as Hsp20, GroES, and GroEL, which
were not DE in the cyanovirocells when the protist was absent.
These chaperones were found over-expressed in Polynucleobacter
asymbioticus responding to a protist [47], and are known to
respond to various stresses in cyanobacteria, including phage
infection [80], heat-shock, salinity, and oxidative stress [81, 82], but
can also protect the photosystem Il from photoinhibition [81], or
help assemble key proteins, including Rubisco [83]. Since the host
Rubisco genes as well as phage structural and lysis genes
(Supplementary Fig. S2) were also over-expressed at this time,
these host chaperones may help assemble key host and phage
proteins during the final stages of infection.

We next asked if the presence of protists enhanced cellular
stress. While only one gene in the “Stress” category was DE (and
under-expressed, relative to the control) in the cyanovirocells
without protist, 14 genes were DE (and over-expressed, relative to
the control) throughout the infection when the protist was added,
with the majority (n =8 genes) over-expressed with an aFC = 3.4
at 6h post phage addition, including the above chaperones
(Hsp20, GroES, and GroEL), which contribute to stress as
mentioned above, and Rubisco (Supplementary Fig. S5D). These
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Fig. 3 Host genes and metabolites altered in each treatment relative to the untreated control. A Number of intracellular metabolites
detected as significantly changing in each of the treatments (Venn diagram) and their log,oFC value in the treatment relative to the untreated
cells (heatmap). Compound names are colored by the class to which they belong, and the confidence in their detection is indicated by an
asterisk next to the name. Confidence of level 1 (1 asterisk) indicates the compound had three identification criteria in positive or negative
mode (i.e., retention peak, mz, and msms), whereas level 2 (2 asterisks) denotes two of the three criteria were met. Compounds denoted as
“Other” represent detected features that were not identified. B Number of host genes differentially expressed in response to protist only
(“cyanobacteria with protist”), phage only (“cyanovirocells only”), or phage plus protist (“cyanovirocells with protist”) pictured in a Venn
diagram as well as their heatmap, which denotes gene expression as log,fold change (FC) values in the treatment compared to the untreated
control over the experiment time course. Gray heatmap cells denote genes or metabolites that did not significantly change their expression or
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data provide further evidence that the stress was higher in the
cyanovirocells when the protist was present than when it was
absent. We posit this stress could increase the energy and
metabolic demand of phage infection in the protist-exposed
cyanovirocells, even without significant predation. This could
happen either directly through metabolic changes [84, 85], or
indirectly through enhancing antipredator strategies that are
known to occur in aquatic bacteria (e.g. increased motility,
metabolite release), which are energetically costly [3, 86, 87].

Altogether, the transcriptomics and endo-metabolomics data
suggest that the presence of the protist, even without significant
predation, (i) augments the transcriptional and endometabolomic
response of cyanovirocells, (ii) shifts cyanovirocell intracellular
physiological responses largely toward the end of an infection
cycle, and (iii) induces a larger stress, energy and resource demand
in the cyanovirocells than in its absence.

SPRINGER NATURE

Protist impact on cyanovirocell resource and energy
production

The above results suggested that cyanovirocells nearing the end
of the infection cycle required more cellular energy and
resources in the presence of protists than in their absence.
Cyanophages often encode auxiliary metabolic genes (AMGs)
that alter (a) host photosynthesis and central C metabolism
pathways (e.g., PPP and Calvin cycle) for obtaining energy (ATP),
reducing power (NADPH), and nucleotide precursors (ribose-5-
phosphate), and (b) P acquisition and nucleotide synthesis
pathways for deviating cellular metabolism toward building new
phages [33-37, 66, 77-79, 88-94]. Specifically, photosynthetic
reaction center proteins, proteins that stabilize such reaction
centers, and proteins that enhance light harvesting during
infection are among the cyanophage AMGs that “boost” host
machinery to ensure photosynthesis during infection. In addition,
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AMGs from central C metabolism pathways inhibit the Calvin
cycle to prevent ATP consumption and to redirect C flow toward
the PPP, from which NADPH and
obtained. With these resources, as well as with acquired P (with
P-stress transporters), cyanophages can replicate their genomes
(reviewed in [31, 78]; Fig. 4A-C).

We next examined the expression of the phage AMGs and host
genes involved in those metabolic pathways. Phage S-SSM5
encodes AMGs involved in all of these pathways: (i) P-stress (pstS,

ribose-5-phosphate are

- Untreated control cells
Cyanobacteria with protist

= Cyanovirocells only

—= Cyanovirocells with protist

Metabolomics Transcriptomics

(D Intra- and extra-cellular

(:) Extra-cellular
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Fig. 4 Cyanovirocell energy and resource metabolic pathways responding to the protist. A Photosynthesis and phosphate (P) stress.
B Central C metabolism, including mannose synthesis, glycolysis, galactose metabolism pentose phosphate pathway (PPP), Calvin cycle, and
the Tricarboxylic acid (TCA) cycle. € De novo purine and pyrimidine nucleotide synthesis. Phage auxiliary metabolic genes (AMGs) are in green
text. Host over-expressed genes are in purple, while the under-expressed one is in red. The color of the arrow or the border (orange or blue)
denotes if the gene is expressed in response to phage only or phage and protist. Metabolites that change significantly have a background
shade colored red (if enriched) or yellow (if depleted) and the position of the shade denotes under which treatment they are altered: in the
cyanovirocells only or in the cyanovirocells co-cultured with protists. D Photosynthetic efficiency of Synechococcus cells under each condition.
Asterisks indicate when treatments are significantly different (t-test, p value <0.05). Cyanovirocells and cyanovirocells with protist both have
significantly lower photosynthetic efficiency than uninfected cells (red and blue arrows with asterisks, respectively), but cells with just the
protist do not (t-test, p value >0.05). Cyanovirocells with protist significantly increase in photosynthetic efficiency from ~2 to ~5h post
infection relative to cyanovirocells alone (t-test, p value <0.05). Abbreviations can be found in the Supplementary text.

phoH), (i) photosynthesis (petE, ptox, hli (n = 2), psbA, psbD, speD),
(iii) central C metabolism (zwf, gnd, talC, ¢p12), and (iv) nucleotide
synthesis (nrdA, nrdB, nrdC, td, cobS) (Fig. 4A-C) [31, 32, 78], and
were all expressed regardless of protist presence (Supplementary
Table S4 and Supplementary Fig. S6). Contrastingly, the cyanovir-
ocells over-expressed 4 and 23 (the same 4 plus 19 more) host
genes in the absence and presence of the protist, respectively,
relative to the control (Supplementary Table S5 and Supplemen-
tary Fig. S7). These genes are for (i) P-stress (phoA, phoB, pstS and
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phoH), (ii) photosynthesis (hli, cpeT, pcxA, cpeC, ndhO, cydB, petF,
ycf3), (iii) central C metabolism (cpsB, fbaA, talB, rbcl and rbcS), and
(iv) de novo nucleotide synthesis (prs and ndk). These were
involved in different steps of the reprogrammed metabolic
pathways than the phage AMGs (Fig. 4), with transaldolase being
the exception, as both the phage (talC) and bacterial (talB)
homologs were expressed in the same step of PPP. Presumably,
this is because an enzymatic “double dose” is helpful for that step,
given that it may be a bottleneck of PPP [79], whereas the rest of
the steps can be driven by just the phage or the host enzyme.
Finally, most genes were expressed at the end of the infection
(6-8h, n=21 genes) in the protist-treated cyanovirocells;
Supplementary Fig. S7). These data suggest that the phage
specifically directed over-expression of host genes complemen-
tary to its AMGs to boost metabolic pathways necessary for the
last stages of phage reproduction with and without the protist,
but more so in the presence of the protist given the larger number
of DE genes.

In summary, protist-treated cyanovirocells had a greater
number of over-expressed host genes involved in (a) P-stress,
which suggests that cyanovirocells co-cultured with protists have
higher P demands than cyanovirocells without protists (b)
nucleotide synthesis, which comes into play after recycling host
DNA [95] and is an energetically costly process, and (c)
photosynthesis, which suggest a larger energetic demand on
Synechococcus during phage infection under protist predation
(Fig. 4A-C). Overall, these data suggest that cyanovirocells have
higher resource and energy demand when exposed to protists,
regardless of significant predation.

Given these findings, we sought to assess whether the protist
imposed a larger energetic demand on cyanovirocells through
measuring the photosynthetic efficiency F,/F,,. While the overall
initial F,/F,, of the Synechococcus cells were lower (0.20-0.29) than
those observed in other photosynthesis studies of Synechococcus
phage infection (0.6-0.7; [36-38]), the discrepancy is likely due the
differences in irradiance and the bacterial strain used. Specifically,
our cells were grown at 20°C and 60 pmol photons m 2s~
temperature and irradiance, respectively, and under these same
conditions, three Synechococcus strains displayed F,/F,, values of
0.26-0.34 [96]. In addition, work with our same strain grown at 10
and 150 pmol photons m2s~' obtained F,/F,, values of 0.36 and
0.15, respectively [97].

The photosynthetic efficiency of cyanobacteria cells co-cultured
with protists (F,/F,, values of 0.28-0.32) was not significantly
different from control cells (F,/F,, values of 0.27-0.33) at any time
point. This may be due to the low abundance of protists relative to
the cyanobacteria. In contrast, the cyanovirocells, with or without
protists, displayed significantly lower Synechococcus photosyn-
thetic efficiency compared to the untreated control—by 35% as
early as 2 h post-infection, and 64% by 12 h post-infection (Fig. 4D
and Supplementary Fig. S8), which coincides with the first and
subsequent infection cycles, respectively. The reduction in
Synechococcus photosynthetic efficiency in response to phage
infection is similar to that observed in virus-infected eukaryotic
phytoplankton [98, 99], but contrasts with prior findings in
Synechococcus or Prochlorococcus phage infection experiments
[36, 37, 100], which demonstrated no change in F,/F, prior to host
cell lysis. This discrepancy is likely due to instrumental differences
as we used a single instead of multiple turnover flash fluorometer,
and this methodological difference enabled us to observe phage-
mediated plastoquinol quenching, indicative of deviation of light
energy away from C fixation toward ATP production, which is not
detectable using multiple turnover flash fluorometers [101-103].
Consistent with this physiological measurement, phage plastoqui-
nol terminal oxidase (ptox) was expressed during early infection
with or without protist (Supplementary Fig. S6A), and ptox has
been hypothesized to facilitate alternative electron flows that
prevent damage to PSII [89, 104].
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Finally, while cyanovirocell photosynthetic efficiency was overall
lower than the cyanobacteria only control as mentioned above,
protist-treated cyanovirocells had a significant increase of ~15%
(£5%) just before the first infection cycle cell lysis (~5h post-
infection), relative to the protist-free cyanovirocells (Fig. 4D and
Supplementary Fig. S8). These results show that the energy required
for phage infection was higher with protist presence toward the end
of infection. Together with the genome-wide transcriptomics and
endo-metabolomics findings, these results suggest that cyanovir-
ocells co-cultured with a protist require greater resources (reflected
in the transcriptional and metabolic changes) and energy (reflected
in increased photosynthetic efficiency and metabolic reprogram-
ming) to support phage reproduction, regardless of whether protists
were actively feeding upon Synechococcus.

Protist impacts on cyanovirocell extracellular metabolites
We next profiled the exometabolome of all treatments (cyano-
bacteria with protist, cyanovirocells only, and cyanovirocells with
protist) for dissolved chemical cues relative to the untreated
control [6, 86, 87], to evaluate whether the presence of a protist
changes ecosystem footprints. A total of 2, 23, and 15
exometabolites significantly changed in each respective treatment
(Fig. 5 and Supplementary Table S1). In the protist-only treatment,
the two metabolites were cinnamic acid and pyrocatechol, which
were significantly depleted. Their depletion could mean either
that the protist induced Synechococcus to release fewer com-
pounds, or that one of the organisms, the protist or Synechococcus,
were utilizing these metabolites, thus leading to decreasing their
extracellular abundance. As these two exometabolites were
absent from the cyanovirocell samples, we interpret that the
protist alone had a unique impact on Synechococcus's exometa-
bolome in that it was different from the impact induced by viral
infection. We next focused on the exometabolite changes induced
by viral infection with and without the presence of the protist.

In the cyanovirocells only treatment, we evaluated the timing
and functional annotation of the 23 exometabolites that changed
relative to the cyanobacteria only control (Fig. 5). Within the first
6 h of infection, 10 metabolites were enriched extracellularly,
indicating pre-lysis phage-induced metabolite release from intact
cells. Functional annotation suggested that the exometabolites
were nucleotides (n = 5), amino acids (n = 1), vitamins (n = 2) and
potential communication (n=1) and stress (n=1) molecules.
These could be resources for cellular or phage growth (e.g., the
nucleotides, amino acids, and vitamins [59, 61, 105]), or cell-to-cell
communication molecules [106]. Such virus-induced changes
could have consequences for the microbial food web. For
example, viruses can induce biochemical changes in the
coccolithophore Emiliania huxleyi that decrease copepod and
protist grazing [22, 107]. These findings suggest that phages
shape both the intra- and the extracellular landscape, and that
cyanovirocells release nutrients prior to cell lysis. Alternatively, as
this treatment was composed of ~67% cyanovirocells and ~33%
uninfected cells (Supplementary Dataset), it is possible that the
enriched exometabolites derive from uninfected cells responding
to cyanovirocells. However, considering that the majority of cells
were infected and phage-mediated metabolite restructuring and
release has been previously reported [59, 61, 108, 109], we favor
the hypothesis that the cyanovirocells are the exometabolite
source. Regardless, the organic matter release undoubtedly
would benefit the larger microbial community by providing
resources [110].

The eight unique exometabolites that were enriched in the
subsequent infection cycles (=8 h) of the protist-free cyanovirocells
were our next focus. We reasoned that these could derive either
from a minority of cyanovirocells undergoing different infection
stages or a majority of lysed cells. Given that they were not
detected in prior timepoints, during the infection cycle, and before
lysis, we presume that the latter scenario is most likely. These were
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Fig.5 Changes in the extracellular metabolome of cyanobacteria across three treatments. Venn diagram: number of significantly changing
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amino acids (n = 4), nucleotides (n = 3) and vitamins (n = 1), thus
supporting prior findings that viral lysis releases organic matter
[59, 109, 111]. Together, the exometabolite data from the protist-
free cyanovirocell treatment suggests that (i) stress and commu-
nication molecules were unique to intact cells, as they were found
only in the first infection cycle, and (ii) cyanovirocell-derived amino
acids, nucleotides, and vitamins are organic resources available to a
microbial community pre- and post-cell lysis.

Finally, we evaluated the 15 exometabolites differentially
detected in the cyanovirocells co-cultured with protists relative
to the cyanobacteria only control, 9 of which were shared with the
cyanovirocells only treatment (and were also enriched), and 6 of
which were new (2 enriched, 4 depleted). The decrease in the
number of enriched exometabolites in the cyanovirocells with
protist treatment relative to the cyanovirocells only treatment
suggests that either in response to the protist the cyanovirocells
were decreasing export/diffusion, or that one of the microbes
(cyanobacterial cells, cyanovirocells, or protists) were utilizing the
metabolites. For example, Sulfitobacter virocells [59] have both
been shown to uptake exometabolites, and both Synechococcus
and the protist are capable of directly importing dissolved
molecules [110, 112]. The 4 exometabolites were derivatives of a
nucleotide, two amino acids, and a TCA cycle metabolite
intermediate from which bacteria obtain energy. All but one were
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depleted during the first infection cycle (Fig. 5), suggesting
consumption by the cyanovirocells to supply extra resources for
phage infection in the presence of the protist.

Ecological implications of protist-cyanovirocell interactions
In this work we sought to move beyond the focus on the
biogeochemical impacts of viral lysis and metabolic reprogram-
ming of viral-infected cyanobacteria [31] toward building a
conceptual model for the impacts of how protist presence
impacts cyanovirocell infection dynamics and physiology (Fig. 6).
To this end, we assessed cross-kingdom interactions between
viruses, protists and cyanobacteria from the cyanovirocell
perspective and its intra- and extracellular responses to the
presence of a protist, with the untreated cell (Fig. 6A) as a baseline
for multi-omics analyses. First, protist presence alone induced no
measurable impact on Synechococcus endometabolites or tran-
scripts, which could be due to the low relative abundance of the
protist. However, protist presence did alter metabolite output,
thus suggesting even low protist numbers have a measurable
ecosystem impact (Fig. 6B).

Second, without the protist, Synechococcus had a small
intracellular response to phage infection, with (i) very few
transcriptional changes, (ii) expected phage AMG-driven meta-
bolic reprogramming (reviewed in [31, 78]), and (iii) no significant
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including uptake by protists (D).

impacts on detected endometabolites (Fig. 6C). Such a small
intracellular impact suggests that this phage can replicate in this
host using existing cellular resources, as previously observed for
heterotroph-infecting phages that are well adapted to their host
[30]. However, the phage-mediated cyanovirocell extracellular
footprint was larger than the intracellular one, with multiple
enriched exometabolites that spanned various nutrient classes
(e.g., nucleotides, amino acids, vitamins, and communication/
stress molecules) and which reinforce that cyanovirocells, similar
to other known, marine organisms [113], can be a source of
diverse “public goods” to feed and communicate with other
organisms.

Third, when cyanovirocells were co-cultured with protists
(Fig. 6D), even without significant population reduction from
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grazing, the cyanovirocell intracellular response increased,
both at the transcriptional and metabolic levels, and was
greatest toward the end of the infection cycle. Expression
of phage structural genes at that time suggests that phage
S-SSM5 was utilizing such host resources for building virions.
Functionally, the protist-treated cyanovirocells were more
stressed, more P-limited, and enhanced their protein folding
and energy acquisition capabilities—observed in the over-
expression of central C metabolism genes and increased
photosynthetic  efficiency.  Metabolically,  cyanovirocells
increased their nucleotides and amino acids, again suggesting
protist presence places a higher metabolic demand on infected
cyanobacteria. The extracellular metabolome may also reflect
such stress as well as prokaryote-eukaryote competition for
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nutrients given that when the protist was present the resources
decreased.

Though only a first step toward mechanism, these findings
highlight key areas for future hypothesis-driven experimental
work as follows. To analyze the impact of the exometabolites on
protist-prey interactions, microfluidic chemotaxis assays (e.g.,
[114]) combined with live cell video microscopy could quantify the
response of diverse bacteria and protists to virocell-released
exometabolites and provide an alternative to bulk population-
based approaches [21, 22, 107]. In addition, to examine which
microbes benefit from the exometabolites and to quantify
nutrient utilization, generation, and exchange, stable isotope
labeling of virocells, followed by a suite of methodological
approaches such as nanoSIMS for spatially resolved compound
flux visualization [115], stable isotope probing [116], or quantita-
tive fluxomics [117] could be employed. Finally, the metabolites
presented here offer a catalog of specific molecules to target via
rapidly advancing mass spectrometry approaches [118], which,
along with Bioorthogonal Noncanonical Amino Acid Tagging
[119-121], would enable the discovery of virocell-derived signal-
ing molecules, chemoattractants, and chemorepellents—all of
which could have profound implications for cell-cell interactions
and food web dynamics. As virocell studies mature, a grand
challenge for the field will be to incorporate virocells into
synthetic microbial communities [122] and ecosystems [123]
along with applying advanced mathematical modeling [124].
These added efforts will enable the community to bridge the gap
between model organism studies and observational accounts of
complex natural communities.

CONCLUSIONS

A decade has passed since the marine scientific community was
“dared” to examine interactions between viral infection and
protists [17]. Using Synechococcus and their viruses, identified as
key predictors of biological carbon flux [39], we mechanistically
explored interactions among cyanobacteria, cyanovirocells, and
protists. We found that cyanovirocells are not the same with and
without the protist, such that even low protist abundance increases
the energy (e.g, ATP) and resource (e.g., reducing power,
phosphate, nucleotides, and amino acids) demand of cyanovir-
ocells relative to protist-free cyanovirocells, especially toward the
end of the infection cycle. Here we take a first approach to
understanding how the presence of a protist impacts cyanovir-
ocells, not how cyanovirocells respond to protist predation given
that the low protist abundance would be a limitation for the latter
endeavor. Future approaches with higher protist numbers may
investigate how cyanovirocells respond to predation or even how
different virocells respond to different predators. While ecosystems
biology modeling is in its infancy [124-127], experimental findings
like those here are critical to provide baseline data needed to help
incorporate viruses and other important top-down predators into
our understanding of ecosystem processes.

DATA AVAILABILITY

Raw data, calculations, and statistical tests are available in the Supplementary
Dataset, which has been deposited, along with the scripts used in the ‘omics
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